Send to

Choose Destination
See comment in PubMed Commons below
Int J Med Microbiol. 2012 Jan;302(1):10-8. doi: 10.1016/j.ijmm.2011.09.012. Epub 2011 Oct 13.

First multi-epitope subunit vaccine against extraintestinal pathogenic Escherichia coli delivered by a bacterial type-3 secretion system (T3SS).

Author information

Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Marchioninistr. 17, 81377 München, Germany.


Infections due to extraintestinal pathogenic E. coli (ExPEC) are very common in humans as well as in animals. In humans ExPEC infections include urinary tract infections (UTI), septicemia, and wound infections, which result in significant morbidity, mortality, and substantial healthcare costs. In view of the increasing number of ExPEC infections caused by more and more resistant strains, effective prevention would be desirable. Given the rising treatment costs, a vaccine may be cost-effective in selected patient groups, such as women with recurrent UTI, patients with neurologic disorders impairing bladder function and men with prostate hyperplasia. Previous vaccine studies used single target proteins or whole inactivated ExPEC cells. Here, we describe a vaccine system for oral application based on artificial multiple subunit vaccine proteins. Those multi-epitope proteins are composed of predicted epitopes derived from ExPEC virulence-associated proteins. As ExPEC are known to form intracellular biofilms in the urothelium and can also resist killing by non-activated macrophages, T-cell responses are supposed to be an important measure to counteract these stages of ExPEC during infection. Therefore, a live bacterial antigen delivery system based upon the Salmonella type-III secretion system (T3SS) was used in this study to directly deliver the vaccine proteins into the cytoplasm of the host cells. Epitope-rich domains of the proteins FyuA, IroN, ChuA, IreA, Iha, and Usp were expressed in an attenuated Salmonella enterica serovar Typhimurium strain and translocated into target cells for extended periods of time inducing a strong T-cell response. No significant antibody titre increase against the secreted vaccine proteins could be detected in vaginal wash or serum. Despite that, one of the vaccine proteins was able to significantly reduce bacterial load in the challenge model of intraperitoneal sepsis. This study shows that a vaccine encompassing distinct epitopes of virulence-associated ExPEC proteins (i) can be applied for a T3SS-dependent vaccination strategy, (ii) elicits T-cell responses and (iii) confers protection after a single application.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center