Format

Send to

Choose Destination
See comment in PubMed Commons below
Nano Lett. 2011 Nov 9;11(11):4978-84. doi: 10.1021/nl2029392. Epub 2011 Oct 20.

Branched TiO₂ nanorods for photoelectrochemical hydrogen production.

Author information

  • 1Department of Mechanical Engineering, Stanford University, California 94305, United States.

Abstract

We report a hierarchically branched TiO(2) nanorod structure that serves as a model architecture for efficient photoelectrochemical devices as it simultaneously offers a large contact area with the electrolyte, excellent light-trapping characteristics, and a highly conductive pathway for charge carrier collection. Under Xenon lamp illumination (UV spectrum matched to AM 1.5G, 88 mW/cm(2) total power density), the branched TiO(2) nanorod array produces a photocurrent density of 0.83 mA/cm(2) at 0.8 V versus reversible hydrogen electrode (RHE). The incident photon-to-current conversion efficiency reaches 67% at 380 nm with an applied bias of 0.6 V versus RHE, nearly two times higher than the bare nanorods without branches. The branches improve efficiency by means of (i) improved charge separation and transport within the branches due to their small diameters, and (ii) a 4-fold increase in surface area which facilitates the hole transfer at the TiO(2)/electrolyte interface.

PMID:
21999403
DOI:
10.1021/nl2029392
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center