Send to

Choose Destination
See comment in PubMed Commons below
Exp Cell Res. 2011 Dec 10;317(20):2853-63. doi: 10.1016/j.yexcr.2011.09.014. Epub 2011 Oct 5.

Interaction of nucleosome assembly proteins abolishes nuclear localization of DGKζ by attenuating its association with importins.

Author information

Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata 990-9585, Japan.


Diacylglycerol kinase (DGK) is involved in the regulation of lipid-mediated signal transduction through the metabolism of a second messenger diacylglycerol. Of the DGK family, DGKζ, which contains a nuclear localization signal, localizes mainly to the nucleus but translocates to the cytoplasm under pathological conditions. However, the detailed mechanism of translocation and its functional significance remain unclear. To elucidate these issues, we used a proteomic approach to search for protein targets that interact with DGKζ. Results show that nucleosome assembly protein (NAP) 1-like 1 (NAP1L1) and NAP1-like 4 (NAP1L4) are identified as novel DGKζ binding partners. NAP1Ls constitutively shuttle between the nucleus and the cytoplasm in transfected HEK293 cells. The molecular interaction of DGKζ and NAP1Ls prohibits nuclear import of DGKζ because binding of NAP1Ls to DGKζ blocks import carrier proteins, Qip1 and NPI1, to interact with DGKζ, leading to cytoplasmic tethering of DGKζ. In addition, overexpression of NAP1Ls exerts a protective effect against doxorubicin-induced cytotoxicity. These findings suggest that NAP1Ls are involved in a novel molecular basis for the regulation of nucleocytoplasmic shuttling of DGKζ and provide a clue to examine functional significance of its translocation under pathological conditions.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center