First card. (A) Pupil dilation between first and second card relative to the time of drawing the first card split by level of uncertainty after first card. Pupil dilates more if the outcome is sure (low uncertainty, light gray, card was 1 or 10) than for high uncertainty trials (black, cards 4,5,6,7), while medium uncertainty trials (dark gray, cards 2,3,8,9) fall in between. Thick lines denote means over participants, thin lines SEM for high and low uncertainty trials; shaded area denotes time when high uncertainty significantly differs from low uncertainty at an expected FDR of 5% (p < FDR0.05 = 0.042). (B) Significance of difference between high and low uncertainty trials as given in (A). Results of point-wise t-tests for equality of means; negative logarithmic scale implies values to the top to be more significant (lower p). Horizontal line denotes expected FDR of 5% (FDR0.05 = 0.042), times of significant differences fall above. (C) Model: Probability of winning (gray) and risk (black) after the first card is drawn as function of the first card. Expected reward is linear in the probability of winning. Units of $ (reward) and $2 (risk) omitted. Note that probability of winning depends on the bet, but risk does not. To pool data over both bets for the analysis of the first card, we exploit symmetry: in case of the bet “second card higher” the number representing the card is replaced by its mirror (1 → 10, 2 → 9,…,10 → 1) and all bets are treated as “second card lower.” Mathematically we denote the actual card as “c” and the bet-corrected card as “c*” [see ]. (D) Points: Pupil dilation [as in (A)] at time of peak significance between high and low uncertainty sorted by card (c*, adjusted for bet); mean and SEM over subjects. The parabola-shape resulting from the quadratic dependence of risk on c* [cf. (C)] is evident. Line: fit of a model including risk, probability of winning, and a constant offset, coefficients u, v, and w, respectively. (E) Evolution of fit parameters [as in (D)] over time. Quickly after the first card, the effect of risk (u) rises, while the effect of reward (and probability of winning, v) shows little systematic change over time. The contribution of the constant (w) reflects the general time course of pupil dilation over the trial, which happens irrespective of the card’s value and thus independent of any decision variables. (F) Correlation of pupil dilation to risk (black) or probability (gray). Top: correlation coefficient, bottom: probability of correlation being different from 0. Horizontal line denotes 5% expected FDR for risk (FDR0.05 = 0.045).