Send to

Choose Destination
Plant Cell Rep. 2012 Feb;31(2):323-37. doi: 10.1007/s00299-011-1168-x. Epub 2011 Oct 13.

Sequence-based novel genomic microsatellite markers for robust genotyping purposes in foxtail millet [Setaria italica (L.) P. Beauv].

Author information

National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.


The unavailability of microsatellite markers and saturated genetic linkage map has restricted the genetic improvement of foxtail millet [Setaria italica (L.) P. Beauv.], despite the fact that in recent times it has been documented as a new model species for biofuel grasses. With the objective to generate a good number of microsatellite markers in foxtail millet cultivar 'Prasad', 690 clones were sequenced which generated 112.95 kb high quality sequences obtained from three genomic libraries each enriched with different microsatellite repeat motifs. Microsatellites were identified in 512 (74.2%) of the 690 positive clones and 172 primer pairs (pp) were successfully designed from 249 (48.6%) unique SSR-containing clones. The efficacies of the microsatellite containing genomic sequences were established by superior primer designing ability (69%), PCR amplification efficiency (85.5%) and polymorphic potential (52%) in the parents of F(2) mapping population. Out of 172 pp, functional 147 markers showed high level of cross-species amplification (~74%) in six grass species. Higher polymorphism rate and broad range of genetic diversity (0.30-0.69 averaging 0.58) obtained in constructed phylogenetic tree using 52 microsatellite markers, demonstrated the utility of markers in germplasm characterizations. In silico comparative mapping of 147 foxtail millet microsatellite containing sequences against the mapping data of sorghum (~18%), maize (~16%) and rice (~5%) indicated the presence of orthologous sequences of the foxtail millet in the respective species. The result thus demonstrates the applicability of microsatellite markers in various genotyping applications, determining phylogenetic relationships and comparative mapping in several important grass species.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center