Send to

Choose Destination
Environ Sci Technol. 2011 Nov 15;45(22):9550-7. doi: 10.1021/es202300w. Epub 2011 Oct 24.

Spectroscopic evidence for ternary complex formation between arsenate and ferric iron complexes of humic substances.

Author information

Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Sciences, ETH Zurich, 8092 Zurich, Switzerland.


Formation of ternary complexes between arsenic (As) oxyanions and ferric iron (Fe) complexes of humic substances (HS) is often hypothesized to represent a major mechanism for As-HS interactions under oxic conditions. However, direct evidence for this potentially important binding mechanism is still lacking. To investigate the molecular-scale interaction between arsenate, As(V), and HS in the presence of Fe(III), we reacted fulvic and humic acids with Fe(III) (1 wt %) and equilibrated the Fe(III)-HS complexes formed with As(V) at pH 7 (molar Fe/As ~10). The local (<5 Å) coordination environments of As and Fe were subsequently studied by means of X-ray absorption spectroscopy. Our results show that 4.5-12.5 μmol As(V)/g HS (25-70% of total As) was associated with Fe(III). At least 70% of this As pool was bound to Fe(III)-HS complexes via inner-sphere complexation. Results obtained from shell fits of As K-edge extended X-ray absorption fine structure (EXAFS) spectra were consistent with a monodentate binuclear ((2)C) and monodentate mononuclear ((1)V) complex stabilized by H-bonds (R(As-Fe) = 3.30 Å). The analysis of Fe K-edge EXAFS spectra revealed that Fe in Fe(III)-HS complexes was predominantly present as oligomeric Fe(III) clusters at neutral pH. Shell-fit results complied with a structural motif in which three corner-sharing Fe(O,OH)(6) octahedra linked by a single μ(3)-O bridge form a planar Fe trimer. In these complexes, the average Fe-C and Fe-Fe bond distances were 2.95 Å and 3.47 Å, respectively. Our study provides the first spectroscopic evidence for ternary complex formation between As(V) and Fe(III)-HS complexes, suggesting that this binding mechanism is of fundamental importance for the cycling of oxyanions such as As(V) in organic-rich, oxic soils and sediments.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center