Send to

Choose Destination
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2012 Jan;198(1):11-24. doi: 10.1007/s00359-011-0682-1. Epub 2011 Oct 8.

Alternative startle motor patterns and behaviors in the larval zebrafish (Danio rerio).

Author information

Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA.


In fishes, the C-start behavior, initiated with a C-shaped body bend, is a taxonomically common and widely studied escape response. Its simple neural circuit has made this behavior a model for examining neural control of movement. The S-start, initiated with an S-shaped body bend, is a physiologically distinct escape that occurs in esocid fishes. Here we examine whether zebrafish larvae perform S-starts in order to better understand startle diversity and to attempt to identify the S-start in a system that is tractable for neurobiological studies. We found that larval zebrafish startles varied in the extent of their caudal bending, resulting in C, S and intermediate-shaped responses. We recorded two distinct motor patterns: nearly simultaneous initial activity along one side of the body, characteristic of C-starts, and nearly simultaneous activity rostrally on one side and caudally on the other, characteristic of S-starts. Head stimulation generally elicited C-starts while tail stimulation elicited C- and S-starts. These results demonstrate that the S-start is more common than previously documented and occurs in early developmental stages. We suggest that the S-start may be a fundamental escape behavior in fishes and may provide a comparative model to the C-start for understanding simple neural circuits.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center