Send to

Choose Destination
See comment in PubMed Commons below
PLoS One. 2011;6(9):e25055. doi: 10.1371/journal.pone.0025055. Epub 2011 Sep 22.

Predicting peptide binding affinities to MHC molecules using a modified semi-empirical scoring function.

Author information

Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.


The Major Histocompatibility Complex (MHC) plays an important role in the human immune system. The MHC is involved in the antigen presentation system assisting T cells to identify foreign or pathogenic proteins. However, an MHC molecule binding a self-peptide may incorrectly trigger an immune response and cause an autoimmune disease, such as multiple sclerosis. Understanding the molecular mechanism of this process will greatly assist in determining the aetiology of various diseases and in the design of effective drugs. In the present study, we have used the Fresno semi-empirical scoring function and modify the approach to the prediction of peptide-MHC binding by using open-source and public domain software. We apply the method to HLA class II alleles DR15, DR1, and DR4, and the HLA class I allele HLA A2. Our analysis shows that using a large set of binding data and multiple crystal structures improves the predictive capability of the method. The performance of the method is also shown to be correlated to the structural similarity of the crystal structures used. We have exposed some of the obstacles faced by structure-based prediction methods and proposed possible solutions to those obstacles. It is envisaged that these obstacles need to be addressed before the performance of structure-based methods can be on par with the sequence-based methods.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Support Center