Format

Send to

Choose Destination
J Vasc Surg. 2011 Dec;54(6 Suppl):2S-9S. doi: 10.1016/j.jvs.2011.05.117. Epub 2011 Oct 1.

Validation of Venous Clinical Severity Score (VCSS) with other venous severity assessment tools from the American Venous Forum, National Venous Screening Program.

Author information

1
Section of Vascular Surgery and Endovascular Therapy, University of Alabama at Birmingham, Birmingham, AL 35294-0012, USA. marc.passman@ccc.uab.edu

Abstract

BACKGROUND:

Several standard venous assessment tools have been used as independent determinants of venous disease severity, but correlation between these instruments as a global venous screening tool has not been tested. The scope of this study is to assess the validity of Venous Clinical Severity Scoring (VCSS) and its integration with other venous assessment tools as a global venous screening instrument.

METHODS:

The American Venous Forum (AVF), National Venous Screening Program (NVSP) data registry from 2007 to 2009 was queried for participants with complete datasets, including CEAP clinical staging, VCSS, modified Chronic Venous Insufficiency Quality of Life (CIVIQ) assessment, and venous ultrasound results. Statistical correlation trends were analyzed using Spearman's rank coefficient as related to VCSS.

RESULTS:

Five thousand eight hundred fourteen limbs in 2,907 participants were screened and included CEAP clinical stage C0: 26%; C1: 33%; C2: 24%; C3: 9%; C4: 7%; C5: 0.5%; C6: 0.2% (mean, 1.41 ± 1.22). VCSS mean score distribution (range, 0-3) for the entire cohort included: pain 1.01 ± 0.80, varicose veins 0.61 ± 0.84, edema 0.61 ± 0.81, pigmentation 0.15 ± 0.47, inflammation 0.07 ± 0.33, induration 0.04 ± 0.27, ulcer number 0.004 ± 0.081, ulcer size 0.007 ± 0.112, ulcer duration 0.007 ± 0.134, and compression 0.30 ± 0.81. Overall correlation between CEAP and VCSS was moderately strong (r(s) = 0.49; P < .0001), with highest correlation for attributes reflecting more advanced disease, including varicose vein (r(s) = 0.51; P < .0001), pigmentation (r(s) = 0.39; P < .0001), inflammation (r(s) = 0.28; P < .0001), induration (r(s) = 0.22; P < .0001), and edema (r(s) = 0.21; P < .0001). Based on the modified CIVIQ assessment, overall mean score for each general category included: Quality of Life (QoL)-Pain 6.04 ± 3.12 (range, 3-15), QoL-Functional 9.90 ± 5.32 (range, 5-25), and QoL-Social 5.41 ± 3.09 (range, 3-15). Overall correlation between CIVIQ and VCSS was moderately strong (r(s) = 0.43; P < .0001), with the highest correlation noted for pain (r(s) = 0.55; P < .0001) and edema (r(s) = 0.30; P < .0001). Based on screening venous ultrasound results, 38.1% of limbs had reflux and 1.5% obstruction in the femoral, saphenous, or popliteal vein segments. Correlation between overall venous ultrasound findings (reflux + obstruction) and VCSS was slightly positive (r(s) = 0.23; P < .0001) but was highest for varicose vein (r(s) = 0.32; P < .0001) and showed no correlation to swelling (r(s) = 0.06; P < .0001) and pain (r(s) = 0.003; P = .7947).

CONCLUSIONS:

While there is correlation between VCSS, CEAP, modified CIVIQ, and venous ultrasound findings, subgroup analysis indicates that this correlation is driven by different components of VCSS compared with the other venous assessment tools. This observation may reflect that VCSS has more global application in determining overall severity of venous disease, while at the same time highlighting the strengths of the other venous assessment tools.

PMID:
21962926
DOI:
10.1016/j.jvs.2011.05.117
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center