Send to

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 2012 Jan;1818(1):64-71. doi: 10.1016/j.bbamem.2011.09.010. Epub 2011 Sep 17.

A consensus segment in the M2 domain of the hP2X(7) receptor shows ion channel activity in planar lipid bilayers and in biological membranes.

Author information

Oswaldo Cruz Foundation, Oswaldo Cruz Institute, Laboratory of Cellular Communication, Av. Brazil 4365, 21045-900, Rio de Janeiro, Brazil.


The P2X(7) receptor (P2X(7)R) is an ATP-gated, cation-selective channel permeable to Na(+), K(+) and Ca(2+). This channel has also been associated with the opening of a non-selective pore that allows the flow of large organic ions. However, the biophysical properties of the P2X(7)R have yet to be characterized unequivocally. We investigated a region named ADSEG, which is conserved among all subtypes of P2X receptors (P2XRs). It is located in the M2 domain of hP2X(7)R, which aligns with the H5 signature sequence of potassium channels. We investigated the channel forming ability of ADSEG in artificial planar lipid bilayers and in biological membranes using the cell-attached patch-clamp techniques. ADSEG forms channels, which exhibit a preference for cations. They are voltage independent and show long-term stability in planar lipid bilayers as well as under patch-clamping conditions. The open probability of the ADSEG was similar to that of native P2X(7)R. The conserved part of the M2 domain of P2X(7)R forms ionic channels in planar lipid bilayers and in biological membranes. Its electrophysiological characteristics are similar to those of the whole receptor. Conserved and hydrophobic part of the M2 domain forms ion channels.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center