Format

Send to

Choose Destination
See comment in PubMed Commons below
RNA Biol. 2011 Nov-Dec;8(6):1173-86. doi: 10.4161/rna.8.6.17836. Epub 2011 Nov 1.

Quantitative mass spectrometry of DENV-2 RNA-interacting proteins reveals that the DEAD-box RNA helicase DDX6 binds the DB1 and DB2 3' UTR structures.

Author information

1
Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore.

Abstract

Dengue virus (DENV) is a rapidly re-emerging flavivirus that causes dengue fever (DF), dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS), diseases for which there are no available therapies or vaccines.  The DENV-2 positive-strand RNA genome contains 5' and 3' untranslated regions (UTRs) that have been shown to form secondary structures required for virus replication and interaction with host cell proteins.  In order to comprehensively identify host cell factors that bind the DENV-2 UTRs, we performed RNA chromatography, using the DENV-2 5' and 3' UTRs as "bait", combined with quantitative mass spectrometry.  We identified several proteins, including DDX6, G3BP1, G3BP2, Caprin1, and USP10, implicated in P body (PB) and stress granule (SG) function, and not previously known to bind DENV RNAs.  Indirect immunofluorescence microscopy showed these proteins to colocalize with the DENV replication complex.  Moreover, DDX6 knockdown resulted in reduced amounts of infectious particles and viral RNA in tissue culture supernatants following DENV infection. DDX6 interacted with DENV RNA in vivo during infection and in vitro this interaction was mediated by the DB1 and DB2 structures in the 3' UTR, possibly by formation of a pseudoknot structure.  Additional experiments demonstrate that, in contrast to DDX6, the SG proteins G3BP1, G3BP2, Caprin1 and USP10 bind to the variable region (VR) in the 3' UTR.  These results suggest that the DENV-2 3' UTR is a site for assembly of PB and SG proteins and, for DDX6, assembly on the 3' UTR is required for DENV replication.

PMID:
21957497
PMCID:
PMC3256426
DOI:
10.4161/rna.8.6.17836
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Taylor & Francis Icon for PubMed Central
    Loading ...
    Support Center