Send to

Choose Destination
Eur J Biochem. 1990 Jun 20;190(2):311-8.

Protein-decorated micelle structure of sodium-dodecyl-sulfate--protein complexes as determined by neutron scattering.

Author information

Institut Max von Laue-Paul Langevin, Grenoble, France.


The structure of the complex between sodium dodecyl sulfate (SDS) and a deuterated bifunctional enzyme, N-5'-phosphoribosylanthranilate isomerase/indole-3-glycerol-phosphate synthase (Mr 49,484), has been studied in dilute solution by small-angle neutron scattering. The complex nearly acquired its final size, as shown by molecular-sieve chromatography, at the chosen SDS concentration of 1.6 mM, which is slightly below the critical micelle concentration of 1.8 mM (at the ionic strength of 0.1 M). The 452 amino-acid residues of the bifunctional enzyme were combined with 216 detergent molecules. The complex was found to be composed of three protein-decorated SDS micelles of unequal size, connected by short flexible polypeptide segments. The largest of the three micelles was the middle one. The SDS-protein complex contained the dodecyl hydrocarbon moieties in three globular cores. Each core was surrounded by a hydrophilic shell, formed by the hydrophilic and amphiphilic stretches of the polypeptide chain, and by the sulfate head groups of the detergent. The average thickness of these shells was 0.7-0.8 nm. The three-micelle complex was cleaved with trypsin at a single site, possibly in a micelle-connecting segment, into a single-micelle fragment at the carboxyl-terminal which comprised 73 SDS molecules and 163 amino-acid residues, and a dual-micelle fragment. One of the micelles within this larger fragment contained 42 SDS molecules and about 90 amino-acid residues; the other micelle contained 101 SDS molecules and about 190 amino-acid residues. The individual micelle sizes seemed to be determined by the amino-acid sequence.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center