Format

Send to

Choose Destination
Immunogenetics. 2012 Feb;64(2):155-61. doi: 10.1007/s00251-011-0571-3. Epub 2011 Sep 27.

A directed miniscreen for genes involved in the Drosophila anti-parasitoid immune response.

Author information

1
Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK.

Abstract

Drosophila larvae react against eggs from the endoparasitoid wasp Leptopilina boulardi by surrounding them in a multilayered cellular capsule. Once a wasp egg is recognized as foreign, circulating macrophage-like cells, known as plasmatocytes, adhere to the invader. After spreading around the wasp egg, plasmatocytes form cellular junctions between the cells, effectively separating the egg from the hemocoel. Next, a second sub-type of circulating immunosurveillance cell (hemocyte), known as lamellocytes, adhere to either the wasp egg or more likely the plasmatocytes surrounding the egg. From these events, it is obvious that adhesion and cell shape change are an essential part of Drosophila's cellular immune response against parasitoid wasp eggs. To date, very few genes have been described as being necessary for a proper anti-parasitization response in Drosophila. With this in mind, we performed a directed genetic miniscreen to discover new genes required for this response. Many of the genes with an encapsulation defect have mammalian homologues involved in cellular adhesion, wound healing, and thrombosis, including extracellular matrix proteins, cellular adhesion molecules, and small GTPases.

PMID:
21947570
DOI:
10.1007/s00251-011-0571-3
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center