Format

Send to

Choose Destination
See comment in PubMed Commons below
Cell Signal. 2012 Jan;24(1):272-81. doi: 10.1016/j.cellsig.2011.09.011. Epub 2011 Sep 17.

Integrin α9β1-mediated cell migration in glioblastoma via SSAT and Kir4.2 potassium channel pathway.

Author information

1
Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61656, USA.

Abstract

The α9β1 integrin accelerates cell migration through binding of the α9 cytoplasmic domain to SSAT, which catalyzes the catabolism of higher order polyamines, spermidine and spermine, to the lower order polyamine, putrescine. SSAT levels were downregulated at both the mRNA and protein levels by shRNA-mediated simultaneous knockdown of MMP-9 and uPAR/cathepsin B. In addition, we noted a prominent reduction in the expression of SSAT with MMP-9 and uPAR/cathepsin B knockdown in the tumor regions of 5310 injected nude mice brains. Further, SSAT knockdown in glioma xenograft cells significantly reduced their migration potential. Interestingly, MMP-9, uPAR and cathepsin B overexpression in these xenograft cells significantly elevated SSAT mRNA and protein levels. The migratory potential of MMP-9/uPAR/cathepsin B-overexpressed 4910 and 5310 cells was not affected by either glybenclamide (Kir 6.x inhibitor) or tertiapin-Q (Kir 1.1 and 3.x inhibitor) but instead was significantly inhibited by either barium or Kir4.2 siRNA treatments. Co-localization of α9 integrin with Kir4.2 was observed in both 4910 and 5310 xenograft cells. However, MMP-9 and uPAR/cathepsin B knockdown in these cells prominently reduced the co-localization of α9 with Kir4.2. Taken together, our results clearly demonstrate that α9β1 integrin-mediated cell migration utilizes SSAT and the Kir4.2 potassium channel pathway, and inhibition of the migratory potential of these glioma xenograft cells by simultaneous knockdown of MMP-9 and uPAR/cathepsin B could be attributed to the reduced SSAT levels and co-localization of α9 integrin with Kir4.2 inward rectifier potassium channels.

PMID:
21946432
PMCID:
PMC3205329
DOI:
10.1016/j.cellsig.2011.09.011
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center