Send to

Choose Destination
Brain Res Brain Res Rev. 1990 Jan-Apr;15(1):1-23.

Modular construction of nervous systems: a basic principle of design for invertebrates and vertebrates.

Author information

Department of Biology, Georgia State University, Atlanta 30303.


The modular construction of brain tissue is not solely a feature of vertebrate nervous tissue, but is characteristic of many invertebrate nervous systems as well. Modern vertebrate and invertebrate modules vary over several orders of magnitude in volume but vary less in diameter. Although the physiological and anatomical differences between the modules discussed herein are overpowering, their importance to nervous system functions are similar. Modules are the serial and parallel processing units that have allowed large-brained animals to evolve. Many invertebrate modules are discrete, hemispherical lobes, visible on the surface of the brain or nerve cord, whereas most mammalian modules are columnar or ellipsoidal tissue compartments that can only be visualized with specific anatomical methods. Lobes from the largest invertebrates can be more voluminous than any neocortical compartments, but these large lobes are usually not single modules. Large invertebrate lobes contain internal compartments that are single modules and of similar size to their vertebrate analogs. However, vertebrate cortical modules or columns, are far more numerous than the compartments in invertebrate brains and in several cases are known to be adjoined laterally into slabs of tissue that extend for several millimeters. Physiological data support the idea that neural modules are not just anatomical entities, but are active local circuits. The specific activities within each type of module will depend upon its neuronal components, both intrinsic and extrinsic, its functional roles and phylogenetic history. Many cellular and intercellular phenomena common to vertebrates and invertebrates underlie the development of modules. Neuronal and glial interactions and their interplay with the extracellular environment depend upon families of molecules with broad phyletic occurrences. The commonalities of growth mechanisms may to a large degree account for the widespread incidence of neuronal processing units. The strategy of enlarging a nervous system through the replication of the basic units is thought to be advantageous for several reasons. This plan allows nervous systems to economize on the branch sizes and lengths needed for interconnections, to ensure that appropriate targets are reached during development and to modulate specific circuits within a larger network.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center