Send to

Choose Destination
See comment in PubMed Commons below
Mol Immunol. 2011 Oct;49(1-2):311-6. doi: 10.1016/j.molimm.2011.09.001. Epub 2011 Sep 22.

Protein kinase-regulated expression and immune function of thioredoxin reductase 1 in mouse macrophages.

Author information

Molecular Biology of Selenium Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.


Macrophages exposed to lipopolysaccharide (LPS) exhibit radical changes in mRNA and protein profiles. This shift in gene expression is geared not only to activate immune effector and regulatory mechanisms, but also to adjust the immune cell's metabolism to new physiological demands. However, it remains largely unknown whether immune function and metabolic state are mutually regulatory and, if so, how they are mechanistically interrelated in macrophages. Selenium, a dietary trace element exerting pleiotropic effects on immune homeostasis, and selenium-containing proteins (selenoproteins) may play a role in such coordination. We examined the incorporation of radiolabeled selenium into protein during LPS stimulation, and identified thioredoxin reductase 1 (TR1) as the only LPS-inducible selenoprotein in macrophages. TR1 induction occurred at the transcriptional level and depended on the intracellular signaling pathways mediated by p38 MAP kinase and IκB kinase. Macrophage-specific ablation of TR1 in mice resulted in a drastic decrease in the expression of VSIG4, a B7 family protein known to suppress T cell activation. These results reveal TR1 as both a regulator and a regulated target in the macrophage gene expression network, and suggest a link between selenium metabolism and immune signaling.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center