Format

Send to

Choose Destination
See comment in PubMed Commons below
J Immunol. 2011 Nov 1;187(9):4451-8. doi: 10.4049/jimmunol.1101378. Epub 2011 Sep 21.

Pathogenic autoreactive B cells are not negatively selected toward matrix protein collagen II.

Author information

1
Medical Inflammation Research, Lund University, Lund, Sweden.

Erratum in

  • J Immunol. 2012 Sep 15;189(6):3263.

Abstract

We have addressed the importance of B cell tolerance to collagen type II, a matrix protein, which is a target in rheumatoid arthritis (RA) and its mouse models. We generated a germline-encoded anti-collagen type II (CII) IgH replacement anti-C1 B cell mouse strain (ACB) to investigate how B cell tolerance to CII, a matrix protein, is subverted and to further understand pathogenesis of RA. Phenotypic analysis revealed that CII-specific B cells were surprisingly neither deleted nor anergized. Instead, they were readily detected in all lymphoid organs. Spontaneously produced autoantibodies could bind directly to cartilage surface without detectable pathology. However, exaggerated arthritis was seen after injection of anti-CII Abs specific for other epitopes. In addition, Abs from CII-specific hybridomas generated from ACB mice induced arthritis. Interestingly, IgH/L chain sequence data in B cell hybridomas revealed a lack of somatic mutations in autoreactive B cells. The ACB model provides the first possibility, to our knowledge, to study B cell tolerance to a matrix protein, and the observations made in the study could not be predicted from previous models. B cell-reactive epitopes on CII are largely shared between human RA and rodent CII-induced arthritis; this study, therefore, has important implications for further understanding of pathological processes in autoimmune diseases like RA.

PMID:
21940677
DOI:
10.4049/jimmunol.1101378
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center