Format

Send to

Choose Destination
See comment in PubMed Commons below
Ecol Appl. 2011 Sep;21(6):1989-2006.

Assessing stream restoration effectiveness at reducing nitrogen export to downstream waters.

Author information

1
Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, Maryland 20688, USA. filoso@umces.edu

Abstract

The degradation of headwater streams is common in urbanized coastal areas, and the role these streams play in contributing to downstream pollution is a concern among natural resource managers and policy makers. Thus, many urban stream restoration efforts are increasingly focused on reducing the downstream flux of pollutants. In regions that suffer from coastal eutrophication, it is unclear whether stream restoration does in fact reduce nitrogen (N) flux to downstream waters and, if so, by how much and at what cost. In this paper, we evaluate whether stream restoration implemented to improve water quality of urban and suburban streams in the Chesapeake Bay region, USA, is effective at reducing the export of N in stream flow to downstream waters. We assessed the effectiveness of restored streams positioned in the upland vs. lowland regions of Coastal Plain watershed during both average and stormflow conditions. We found that, during periods of low discharge, lowland streams that receive minor N inputs from groundwater or bank seepage reduced in-stream N fluxes. Furthermore, lowland streams with the highest N concentrations and lowest discharge were the most effective. During periods of high flow, only those restoration projects that converted lowland streams to stream-wetland complexes seemed to be effective at reducing N fluxes, presumably because the design promoted the spillover of stream flow onto adjacent floodplains and wetlands. The observed N-removal rates were relatively high for stream ecosystems, and on the order of 5% of the inputs to the watershed. The dominant forms of N entering restored reaches varied during low and high flows, indicating that N uptake and retention were controlled by distinctive processes during different hydrological conditions. Therefore, in order for stream restoration to effectively reduce N fluxes exported to downstream waters, restoration design should include features that enhance the processing and retention of different forms of N, and for a wide range of flow conditions. The use of strategic designs that match the dominant attributes of a stream such as position in the watershed, influence of groundwater, dominant flow conditions, and N concentrations is crucial to assure the success of restoration.

PMID:
21939039
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center