Send to

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2011 Nov 1;50(43):9377-87. doi: 10.1021/bi200218s. Epub 2011 Oct 5.

The structural role of N-linked glycans on human glypican-1.

Author information

  • 1Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84, Lund, Sweden.


Glypicans are cell-surface heparan sulfate proteoglycans that regulate developmental signaling pathways by binding growth factors to their heparan sulfate chains. The primary structures of glypican core proteins contain potential N-glycosylation sites, but the importance of N-glycosylation in glypicans has never been investigated in detail. Here, we studied the role of the possible N-glycosylation sites at Asn-79 and Asn-116 in recombinant anchorless glypican-1 expressed in eukaryotic cells. Mutagenesis and enzymatic cleavage indicated that the potential N-glycosylation sites are invariably occupied. Experiments using the drug tunicamycin to inhibit the N-linked glycosylation of glypican-1 showed that secretion of anchorless glypican-1 was reduced and that the protein did not accumulate inside the cells. Heparan sulfate substitution of N-glycosylation mutant N116Q was similar to wild-type glypican-1 while the N79Q mutant and also the double mutant N79Q,N116Q were mostly secreted as high-molecular-weight heparan sulfate proteoglycan. N-Glycosylation mutants and N-deglycosylated glypican-1 had far-UV circular dichroism and fluorescence emission spectra that were highly similar to those of N-glycosylated glypican-1. A single unfolding transition at high concentrations of urea was found for both N-deglycosylated glypican-1 and glypican-1 in which the N-glycosylation sites had been removed by mutagenesis when chemical denaturation was monitored by circular dichroism and fluorescence emission spectroscopy. In summary, we have found that the potential N-glycosylation sites in glypican-1 are invariably occupied and that the N-linked glycans on glypican-1 affect protein expression and heparan sulfate substitution but that correct folding can be obtained in the absence of N-linked glycans.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center