Format

Send to

Choose Destination
See comment in PubMed Commons below
Acta Crystallogr D Biol Crystallogr. 2011 Oct;67(Pt 10):831-8. doi: 10.1107/S0907444911028010. Epub 2011 Sep 8.

A novel mechanism of sulfur transfer catalyzed by O-acetylhomoserine sulfhydrylase in the methionine-biosynthetic pathway of Wolinella succinogenes.

Author information

1
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA.

Abstract

O-Acetylhomoserine sulfhydrylase (OAHS) is a pyridoxal 5'-phosphate (PLP) dependent sulfide-utilizing enzyme in the L-cysteine and L-methionine biosynthetic pathways of various enteric bacteria and fungi. OAHS catalyzes the conversion of O-acetylhomoserine to homocysteine using sulfide in a process known as direct sulfhydrylation. However, the source of the sulfur has not been identified and no structures of OAHS have been reported in the literature. Here, the crystal structure of Wolinella succinogenes OAHS (MetY) determined at 2.2 Å resolution is reported. MetY crystallized in space group C2 with two monomers in the asymmetric unit. Size-exclusion chromatography, dynamic light scattering and crystal packing indicate that the biological unit is a tetramer in solution. This is further supported by the crystal structure, in which a tetramer is formed using a combination of noncrystallographic and crystallographic twofold axes. A search for structurally homologous proteins revealed that MetY has the same fold as cystathionine γ-lyase and methionine γ-lyase. The active sites of these enzymes, which are also PLP-dependent, share a high degree of structural similarity, suggesting that MetY belongs to the γ-elimination subclass of the Cys/Met metabolism PLP-dependent family of enzymes. The structure of MetY, together with biochemical data, provides insight into the mechanism of sulfur transfer to a small molecule via a protein thiocarboxylate intermediate.

PMID:
21931214
PMCID:
PMC3176619
DOI:
10.1107/S0907444911028010
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for International Union of Crystallography Icon for PubMed Central
    Loading ...
    Support Center