Send to

Choose Destination
Eur J Immunol. 2011 Dec;41(12):3667-76. doi: 10.1002/eji.201141645. Epub 2011 Nov 3.

Palmitoylation of MICA, a ligand for NKG2D, mediates its recruitment to membrane microdomains and promotes its shedding.

Author information

Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, UK.


MICA and MICB (MHC-class-I-related chain A/B) are transmembrane proteins expressed in pathological conditions that are ligands for NKG2D, an activating receptor found on cytotoxic lymphocytes. The recognition on target cells of NKG2D ligands leads to the activation of lysis and cytokine secretion by NK cells and T cells. Besides being expressed at the cell surface, MICA/B can be released as soluble proteins. Soluble NKG2D ligands downmodulate expression of the NKG2D receptor on lymphocytes, leading to a diminished cytotoxic response. Prior studies suggested that recruitment of MICA/B molecules to cholesterol-enriched microdomains was an important factor regulating the proteolytic release of these molecules. We now show that recruitment of MICA to these microdomains depends on palmitoylation of two cysteine residues that allow MICA molecules to reside in the membrane in the same domains as caveolin-1. Compared with WT molecules, nonpalmitoylated mutant MICA molecules were shed to the supernatant with low efficiency; however, both WT and mutant MICA were able to trigger NK cell cytotoxicity. These data suggest that the presence of NKG2D ligands at the plasma membrane is sufficient to activate cytotoxicity and reflect the need of different ligands to exploit different cellular pathways to reach the cell surface upon different stress situations.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center