Send to

Choose Destination
Sens Actuators B Chem. 2011 Nov 28;159(1):135-141.

Platinum (II) Porphyrin-Containing Thermoresponsive Poly(N-isopropylacrylamide) Copolymer as Fluorescence Dual Oxygen and Temperature Sensor.

Author information

Center for Biosignatures Discovery Automation, Biodesign Institute, Arizona State University, Tempe, AZ 85287.


A random copolymer, poly(NIPAAm-co-PtPorphyrin), consisting of N-isopropylacrylamide (NIPAAm) and platinum (II) porphyrin units, behaves as an optical dual sensor for oxygen and temperature. The dual sensor is designed by incorporating an oxygen-sensitive platinum (II) porphyrin (M1) into a temperature-sensitive polymer (PNIPAAm). The polymer exhibited low critical solution temperature (LCST) property at 31.5 °C. This LCST affected the polymer's aggregation status, which in turn affected the nanostructures, fluorescence intensities, and responses to dissolved oxygen. This enables the polymer to functionalize as a dual temperature and dissolved oxygen sensor. Oxygen response of the platinum (II) porphyrin probes in the polymer followed a two-site Stern-Volmer model, indicating the nonuniform distribution of the probes. The copolymer was used to preliminarily monitor the oxygen consumption of Escherichia coli (E. coli) bacteria. The results indicate a potential application of the polymer in biological fields.

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center