Format

Send to

Choose Destination
Nat Cell Biol. 2011 Sep 18;13(10):1224-33. doi: 10.1038/ncb2330.

Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase.

Author information

1
Department of Internal Medicine, Yale University, New Haven, Connecticut 06520, USA.

Erratum in

  • Nat Cell Biol. 2011 Nov;13(11):1383.

Abstract

Anti-apoptotic Bcl2 family proteins such as Bcl-x(L) protect cells from death by sequestering apoptotic molecules, but also contribute to normal neuronal function. We find in hippocampal neurons that Bcl-x(L) enhances the efficiency of energy metabolism. Our evidence indicates that Bcl-x(L)interacts directly with the β-subunit of the F(1)F(O) ATP synthase, decreasing an ion leak within the F(1)F(O) ATPase complex and thereby increasing net transport of H(+) by F(1)F(O) during F(1)F(O) ATPase activity. By patch clamping submitochondrial vesicles enriched in F(1)F(O) ATP synthase complexes, we find that, in the presence of ATP, pharmacological or genetic inhibition of Bcl-x(L) activity increases the membrane leak conductance. In addition, recombinant Bcl-x(L) protein directly increases the level of ATPase activity of purified synthase complexes, and inhibition of endogenous Bcl-x(L) decreases the level of F(1)F(O) enzymatic activity. Our findings indicate that increased mitochondrial efficiency contributes to the enhanced synaptic efficacy found in Bcl-x(L)-expressing neurons.

PMID:
21926988
PMCID:
PMC3186867
DOI:
10.1038/ncb2330
[Indexed for MEDLINE]
Free PMC Article

Publication type, MeSH terms, Substances, Grant support

Publication type

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center