Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2011 Nov 25;286(47):40725-33. doi: 10.1074/jbc.M111.275495. Epub 2011 Sep 16.

miR-200a regulates Nrf2 activation by targeting Keap1 mRNA in breast cancer cells.

Author information

1
Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.

Abstract

NF-E2-related factor 2 (Nrf2) is an important transcription factor that activates the expression of cellular detoxifying enzymes. Nrf2 expression is largely regulated through the association of Nrf2 with Kelch-like ECH-associated protein 1 (Keap1), which results in cytoplasmic Nrf2 degradation. Conversely, little is known concerning the regulation of Keap1 expression. Until now, a regulatory role for microRNAs (miRs) in controlling Keap1 gene expression had not been characterized. By using miR array-based screening, we observed miR-200a silencing in breast cancer cells and demonstrated that upon re-expression, miR-200a targets the Keap1 3'-untranslated region (3'-UTR), leading to Keap1 mRNA degradation. Loss of this regulatory mechanism may contribute to the dysregulation of Nrf2 activity in breast cancer. Previously, we have identified epigenetic repression of miR-200a in breast cancer cells. Here, we find that treatment with epigenetic therapy, the histone deacetylase inhibitor suberoylanilide hydroxamic acid, restored miR-200a expression and reduced Keap1 levels. This reduction in Keap1 levels corresponded with Nrf2 nuclear translocation and activation of Nrf2-dependent NAD(P)H-quinone oxidoreductase 1 (NQO1) gene transcription. Moreover, we found that Nrf2 activation inhibited the anchorage-independent growth of breast cancer cells. Finally, our in vitro observations were confirmed in a model of carcinogen-induced mammary hyperplasia in vivo. In conclusion, our study demonstrates that miR-200a regulates the Keap1/Nrf2 pathway in mammary epithelium, and we find that epigenetic therapy can restore miR-200a regulation of Keap1 expression, therefore reactivating the Nrf2-dependent antioxidant pathway in breast cancer.

PMID:
21926171
PMCID:
PMC3220489
DOI:
10.1074/jbc.M111.275495
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center