Format

Send to

Choose Destination
See comment in PubMed Commons below
Cell Host Microbe. 2011 Sep 15;10(3):185-96. doi: 10.1016/j.chom.2011.08.004.

TRIM79α, an interferon-stimulated gene product, restricts tick-borne encephalitis virus replication by degrading the viral RNA polymerase.

Author information

1
Innate Immunity and Pathogenesis Unit, Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.

Abstract

In response to virus infection, type I interferons (IFNs) induce several genes, most of whose functions are largely unknown. Here, we show that the tripartite motif (TRIM) protein, TRIM79α, is an IFN-stimulated gene (ISG) product that specifically targets tick-borne encephalitis virus (TBEV), a Flavivirus that causes encephalitides in humans. TRIM79α restricts TBEV replication by mediating lysosome-dependent degradation of the flavivirus NS5 protein, an RNA-dependent RNA polymerase essential for virus replication. NS5 degradation was specific to tick-borne flaviviruses, as TRIM79α did not recognize NS5 from West Nile virus (WNV) or inhibit WNV replication. In the absence of TRIM79α, IFN-β was less effective in inhibiting tick-borne flavivirus infection of mouse macrophages, highlighting the importance of a single virus-specific ISG in establishing an antiviral state. The specificity of TRIM79α for TBEV reveals a remarkable ability of the innate IFN response to discriminate between closely related flaviviruses.

Comment in

PMID:
21925107
PMCID:
PMC3182769
DOI:
10.1016/j.chom.2011.08.004
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center