Send to

Choose Destination
See comment in PubMed Commons below
Bioarchitecture. 2011 May;1(3):105-109.

Pulling it together: The mitotic function of TACC3.

Author information

The Physiological Laboratory; University of Liverpool; Liverpool, UK.


Transforming acidic coiled coil 3 (TACC3) is a non-motor microtubule-associated protein (MAP) that is important for mitotic spindle stability and organization. The exact mechanism by which TACC3 acts at microtubules to stabilize the spindle has been unclear. However, several recent studies identified that the TACC3 complex at microtubules contains clathrin in addition to its previously identified binding partner, colonic and hepatic tumor overexpressed gene (ch-TOG). In this complex, phosphorylated TACC3 interacts directly with both ch-TOG and clathrin heavy chain, promoting accumulation of all complex members at the mitotic spindle. This complex stabilizes kinetochore fibers within the spindle by forming cross-bridges that link adjacent microtubules in these bundles. So, TACC3 is an adaptor that recruits ch-TOG and clathrin to mitotic microtubules, in an Aurora A kinase-regulated manner. In this mini-review we will describe the recent advances in the understanding of TACC 3 function and present a model that pulls together these new data with previous observations.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Taylor & Francis Icon for PubMed Central
    Loading ...
    Support Center