Send to

Choose Destination
See comment in PubMed Commons below
Toxicol Lett. 2011 Nov 30;207(2):104-11. doi: 10.1016/j.toxlet.2011.08.023. Epub 2011 Sep 3.

New insights into the Ca2+-ATPases that contribute to cadmium tolerance in yeast.

Author information

Departamento de Ciências Biológicas, Universidade Integrada do Alto Uruguai e das Missões (URI), Erechim, RS, Brazil.


Cadmium (Cd(2+)) is a toxic heavy metal which triggers several toxic effects in eukaryotes, including neurotoxicity and impaired calcium metabolism. In the model organism Saccharomyces cerevisiae, the best characterized pathway for Cd(2+) detoxification involves conjugation with glutathione (GSH) and subsequent transport to vacuoles by Ycf1p, an ATPase homologous to human MRP1 (Multidrug resistance associated protein 1). However, Cd(2+) tolerance also can be mediated by Pmr1p, a Ca(2+) pump located in the Golgi membrane, possibly through to the secretory pathway. Herein, we showed that inactivation of the PMR1 gene, alone or simultaneously with YCF1, delayed initial Cd(2+) capture compared to wild-type (WT) cells. In addition, Cd(2+) treatment altered the expression profile of yeast internal Ca(2+) transporters; specifically, PMC1 gene expression is induced substantially by the metal in WT cells, and this induction is stronger in mutants lacking YCF1. Taken together, these results indicate that, in addition to Pmr1p, the vacuolar Ca(2+)-ATPase Pmc1p also helps yeast cells cope with Cd(2+) toxicity. We propose a model where Pmc1p and Pmr1p Ca(2+)-ATPase function in cooperation with Ycf1p to promote Cd(2+) detoxification.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center