Send to

Choose Destination
Chem Res Toxicol. 2011 Dec 19;24(12):2153-66. doi: 10.1021/tx200294c. Epub 2011 Sep 29.

Specificity of human aldo-keto reductases, NAD(P)H:quinone oxidoreductase, and carbonyl reductases to redox-cycle polycyclic aromatic hydrocarbon diones and 4-hydroxyequilenin-o-quinone.

Author information

Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.


Polycyclic aromatic hydrocarbons (PAHs) are suspect human lung carcinogens and can be metabolically activated to remote quinones, for example, benzo[a]pyrene-1,6-dione (B[a]P-1,6-dione) and B[a]P-3,6-dione by the action of either P450 monooxygenase or peroxidases, and to non-K region o-quinones, for example B[a]P-7,8-dione, by the action of aldo keto reductases (AKRs). B[a]P-7,8-dione also structurally resembles 4-hydroxyequilenin o-quinone. These three classes of quinones can redox cycle, generate reactive oxygen species (ROS), and produce the mutagenic lesion 8-oxo-dGuo and may contribute to PAH- and estrogen-induced carcinogenesis. We compared the ability of a complete panel of human recombinant AKRs to catalyze the reduction of PAH o-quinones in the phenanthrene, chrysene, pyrene, and anthracene series. The specific activities for NADPH-dependent quinone reduction were often 100-1000 times greater than the ability of the same AKR isoform to oxidize the cognate PAH-trans-dihydrodiol. However, the AKR with the highest quinone reductase activity for a particular PAH o-quinone was not always identical to the AKR isoform with the highest dihydrodiol dehydrogenase activity for the respective PAH-trans-dihydrodiol. Discrete AKRs also catalyzed the reduction of B[a]P-1,6-dione, B[a]P-3,6-dione, and 4-hydroxyequilenin o-quinone. Concurrent measurements of oxygen consumption, superoxide anion, and hydrogen peroxide formation established that ROS were produced as a result of the redox cycling. When compared with human recombinant NAD(P)H:quinone oxidoreductase (NQO1) and carbonyl reductases (CBR1 and CBR3), NQO1 was a superior catalyst of these reactions followed by AKRs and last CBR1 and CBR3. In A549 cells, two-electron reduction of PAH o-quinones causes intracellular ROS formation. ROS formation was unaffected by the addition of dicumarol, suggesting that NQO1 is not responsible for the two-electron reduction observed and does not offer protection against ROS formation from PAH o-quinones.

[Indexed for MEDLINE]
Free PMC Article

Publication type, MeSH terms, Substances, Grant support

Supplemental Content

Full text links

Icon for American Chemical Society Icon for PubMed Central
Loading ...
Support Center