Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuropharmacology. 2012 Jan;62(1):464-73. doi: 10.1016/j.neuropharm.2011.08.045. Epub 2011 Sep 2.

Pharmacological modulation of stress-induced behavioral changes in the light/dark exploration test in male C57BL/6J mice.

Author information

1
Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852-9411, USA.

Abstract

Psychological stress is a major risk factor for mood and anxiety disorders. However, the phenotypic manifestation of stress effects varies across individuals, likely due, in part, to genetic variation. Modeling the behavioral and neural consequences of stress across genetically diverse inbred mouse strains is a valuable approach to studying gene × stress interactions. Recent work has shown that C57BL/6J mice exposed to ten daily sessions of restraint stress exhibited increased exploration of the aversive light compartment in the light/dark exploration (LDE) test. Here we sought to clarify the nature of this stress-induced phenotype by testing the ability of treatment with various clinically efficacious drugs of different therapeutic classes to rescue it. Ten days of restraint increased light compartment exploration, reduced body weight and sensitized the corticosterone response to swim stress. Subchronic administration (during stress and LDE testing) of fluoxetine, and to a lesser extent, lithium chloride, rescued stress-induced LDE behavior. Chronic fluoxetine treatment prior to (plus during stress and testing) failed to block the LDE stress effect. Acute administration of antipsychotic haloperidol, anti-ADHD medication methylphenidate or anxiolytic drug chlordiazepoxide, prior to LDE testing, was also unable to normalize the LDE stress effect. Collectively, these data demonstrate a treatment-selective prophylactic rescue of a restraint stress-induced behavioral abnormality in the C57BL/6J inbred strain. Further work with this novel model could help elucidate genetic and neural mechanisms mediating stress-induced changes in mouse 'emotion-relevant' behaviors and, ultimately, further understanding of the pathophysiology of stress-related neuropsychiatric disorders. This article is part of a Special Issue entitled 'Anxiety and Depression'.

PMID:
21906605
PMCID:
PMC3195838
DOI:
10.1016/j.neuropharm.2011.08.045
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center