Format

Send to

Choose Destination
See comment in PubMed Commons below
J Clin Invest. 1990 Jun;85(6):1799-809.

Three-dimensional intracellular calcium gradients in single human burst-forming units-erythroid-derived erythroblasts induced by erythropoietin.

Author information

1
Department of Medicine, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey 17033.

Abstract

We have previously shown that the intracellular free Ca2+ increase induced by erythropoietin is likely related to differentiation rather than proliferation in human BFU-E-derived erythroblasts (1989. Blood. 73:1188-1194). Since cell differentiation involves transcription of specific regions of the genome, and since nuclear endonucleases responsible for single strand DNA breaks observed in cells undergoing differentiation are Ca2+ dependent, we investigated whether the erythropoietin-induced calcium signal is transmitted from cytosol to nucleus in this study. To elucidate subcellular Ca2+ gradients, the technique of optical sectioning microscopy was used. After determining the empirical three-dimensional point spread function of the video imaging system, contaminating light signals from optical planes above and below the focal plane of interest were removed by deconvolution using the nearest neighboring approach. Processed images did not reveal any discernible subcellular Ca2+ gradients in unstimulated erythroblasts. By contrast, with erythropoietin stimulation, there was a two- to threefold higher Ca2+ concentration in the nucleus compared to the surrounding cytoplasm. We suggest that the rise in nuclear Ca2+ may activate Ca2(+)-dependent endonucleases and initiate differentiation. The approach described here offers the opportunity to follow subcellular Ca2+ changes in response to a wide range of stimuli, allowing new insights into the role of regional Ca2+ changes in regulation of cell function.

PMID:
2189892
PMCID:
PMC296643
DOI:
10.1172/JCI114638
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Journal of Clinical Investigation Icon for PubMed Central
    Loading ...
    Support Center