Send to

Choose Destination
See comment in PubMed Commons below
Biopolymers. 2012 Jun;97(6):337-46. doi: 10.1002/bip.21717. Epub 2011 Sep 6.

Structure and pH-induced alterations of recombinant and natural spider silk proteins in solution.

Author information

Department of Chemistry, Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), QC G1V 0A6, Canada.


The spinning process of spiders can modulate the mechanical properties of their silk fibers. It is therefore of primary importance to understand what are the key elements of the spider spinning process to develop efficient industrial spinning processes. We have exhaustively investigated the native conformation of major ampullate silk (MaS) proteins by comparing the content of the major ampullate gland of Nephila clavipes, solubilized MaS (SolMaS) fibers and the recombinant proteins rMaSpI and rMaSpII using (1) H solution NMR spectroscopy. The results indicate that the protein secondary structure is basically identical for the recombinant protein rMaSpI, SolMaS proteins, and the proteins in the dope, and corresponds to a disordered protein rich in 3(1) -helices. The data also show that glycine proton chemical shifts of rMaSpI and SolMaS are affected by pH, but that this change is not due to a modification of the secondary structure. Using a combination of NMR and dynamic light scattering, we have found that the spectral alteration of glycine is concomitant to a modification of the hydrodynamical diameter of recombinant and solubilized MaS. This led us to suggest new potential roles for the pH acidification in the spinning process of MaS proteins.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center