Format

Send to

Choose Destination
Biosci Biotechnol Biochem. 2011;75(9):1677-84. Epub 2011 Sep 7.

Anti-diabetic effects of a kaempferol glycoside-rich fraction from unripe soybean (Edamame, Glycine max L. Merrill. 'Jindai') leaves on KK-A(y) mice.

Author information

1
Course of Science of Bioresources, The United Graduate School of Agricultural Science, Iwate University.

Abstract

The anti-diabetic effects of a kaempferol glycoside-rich fraction (KG) prepared from leaves of unripe Jindai soybean (Edamame) and kaempferol, an aglycone of kaempferol glycoside, were determined in genetically type 2 diabetic KK-A(y) mice. The hemoglobin A(₁c) level was decreased and tended to be decreased by respectively feeding KG and kaempferol (K). The area under the curve (AUC) in the oral glucose tolerance test (OGTT) tended to be decreased by feeding K and KG. The liver triglyceride level and fatty acid synthase activity were both decreased in the mice fed with KG and K when compared to those parameters in the control mice. These results suggest that KG and K would be useful to improve the diabetes condition. The major flavonoids in KG were identified as kaempferol 3-O-β-D-glucopyranosyl(1→2)-O-[α-L-rhamnopyranosyl(1→6)]-β-D-galactopyranoside, kaempferol 3-O-β-D-glucopyranosyl(1→2)-O-[α-L-rhamnopyranosyl(1→6)]-β-D-glucopyranoside, kaempferol 3-O-β-D-(2-O-β-D-glucopyranosyl) galactopyranoside and kaempferol 3-O-β-D-(2,6-di-O-α-L-rhamnopyranosyl) galactopyronoside, suggesting that these compounds or some of them may be concerned with mitigation of diabetes.

PMID:
21897048
DOI:
10.1271/bbb.110168
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Taylor & Francis Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic
Loading ...
Support Center