Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Microbiol. 2011 Oct;82(2):447-61. doi: 10.1111/j.1365-2958.2011.07822.x. Epub 2011 Sep 19.

CsrA-FliW interaction governs flagellin homeostasis and a checkpoint on flagellar morphogenesis in Bacillus subtilis.

Author information

1
Department of Biology, Indiana University, Bloomington, IN 47408, USA.

Abstract

CsrA is a widely distributed RNA binding protein that regulates translation initiation and/or mRNA stability of target transcripts. CsrA activity is antagonized by sRNA(s) containing multiple CsrA binding sites in several Gram-negative bacterial species. Here we discover FliW, the first protein antagonist of CsrA activity that constitutes a partner switching mechanism to control flagellin synthesis in the Gram-positive organism Bacillus subtilis. Following the flagellar assembly checkpoint of hook completion, secretion of flagellin (Hag) releases FliW protein from a FliW-Hag complex. FliW then binds to CsrA and relieves CsrA-mediated translational repression of hag for flagellin synthesis concurrent with filament assembly. Thus, flagellin homeostatically restricts its own translation. Homeostatic autoregulation may be a general mechanism to precisely control structural subunits required at specific times and in finite amounts such as those involved in the assembly of flagella, type III secretion machines and pili. Finally, phylogenetic analysis suggests that CsrA, a highly pleiotropic virulence regulator in many bacterial pathogens, had an ancestral role in flagellar assembly and evolved to co-regulate various cellular processes with motility.

PMID:
21895793
PMCID:
PMC3192257
DOI:
10.1111/j.1365-2958.2011.07822.x
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center