Format

Send to

Choose Destination
See comment in PubMed Commons below
J Mol Cell Cardiol. 2012 Feb;52(2):376-87. doi: 10.1016/j.yjmcc.2011.08.014. Epub 2011 Aug 23.

Different subcellular populations of L-type Ca2+ channels exhibit unique regulation and functional roles in cardiomyocytes.

Author information

1
Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA.

Abstract

Influx of Ca(2+) through L-type Ca(2+) channels (LTCCs) contributes to numerous cellular processes in cardiomyocytes including excitation-contraction (EC) coupling, membrane excitability, and transcriptional regulation. Distinct subpopulations of LTCCs have been identified in cardiac myocytes, including those at dyadic junctions and within different plasma membrane microdomains such as lipid rafts and caveolae. These subpopulations of LTCCs exhibit regionally distinct functional properties and regulation, affording precise spatiotemporal modulation of L-type Ca(2+) current (I(Ca,L)). Different subcellular LTCC populations demonstrate variable rates of Ca(2+)-dependent inactivation and sometimes coupled gating of neighboring channels, which can lead to focal, persistent I(Ca,L). In addition, the assembly of spatially defined macromolecular signaling complexes permits compartmentalized regulation of I(Ca,L) by a variety of neurohormonal pathways. For example, β-adrenergic receptor subtypes signal to different LTCC subpopulations, with β(2)-adrenergic activation leading to enhanced I(Ca,L) through caveolar LTCCs and β(1)-adrenergic stimulation modulating LTCCs outside of caveolae. Disruptions in the normal subcellular targeting of LTCCs and associated signaling proteins may contribute to the pathophysiology of a variety of cardiac diseases including heart failure and certain arrhythmias. Further identifying the characteristic functional properties and array of regulatory molecules associated with specific LTCC subpopulations will provide a mechanistic framework to understand how LTCCs contribute to diverse cellular processes in normal and diseased myocardium. This article is part of a Special Issue entitled "Local Signaling in Myocytes".

PMID:
21888911
PMCID:
PMC3264751
DOI:
10.1016/j.yjmcc.2011.08.014
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center