Send to

Choose Destination
J Bioenerg Biomembr. 2011 Oct;43(5):493-505. doi: 10.1007/s10863-011-9380-5. Epub 2011 Sep 1.

Mitochondrial bioenergetic profile and responses to metabolic inhibition in human hepatocarcinoma cell lines with distinct differentiation characteristics.

Author information

Department of Medical and Biological Sciences, MATI Centre of Excellence University of Udine, p.le Kolbe4, 33100 Udine, Italy.


The classical view of tumour cell bioenergetics has been recently revised. Then, the definition of the mitochondrial profile is considered of fundamental importance for the development of anti-cancer therapies, but it still needs to be clarified. We investigated two human hepatocellular carcinoma cell lines: the partially differentiated HepG2 and the undifferentiated JHH-6. High resolution respirometry revealed a marked impairment/uncoupling of OXPHOS in JHH-6 compared with HepG2, with the phosphorylation system limiting the capacity for electron transport much more in JHH-6. Blocking glycolysis or mitochondrial ATP synthase we demonstrated that in JHH-6 ATP synthase functions in reverse and consumes glycolytic ATP, thereby sustaining ΔΨm. A higher expression level of ATP synthase Inhibitor Factor 1 (IF1), a higher extent of IF1 bound to ATP synthase and a lower ATPase/synthase capacity were documented in JHH-6. Thus, here IF1 appears to down-regulate the reverse mode of ATPsynthase activity, thereby playing a crucial role in controlling energy waste and ΔΨm. These results, while confirming the over-expression of IF1 in cancer cells, are the first to indicate an inverse link between cell differentiation status and IF1 (expression level and regulatory function).

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center