Reduction of electrode polarization capacitance in low-frequency impedance spectroscopy by using mesh electrodes

Biosens Bioelectron. 2011 Nov 15;29(1):13-7. doi: 10.1016/j.bios.2011.06.050. Epub 2011 Jul 30.

Abstract

Dielectric measurements of biological samples are obscured by electrode polarization, which at low frequencies dominates over the actual sample response. Reduction of this artifact is especially necessary in studying interactions of electric field with biological systems in the α-dispersion range. We developed a method to reduce the influence of electrode polarization by employing mesh instead of solid electrodes as sensing probes, thereby reducing the area of the double layer. The design decreases the electrode-electrolyte contact area by almost 40% while keeping the bulk sample capacitance the same. Interrogation electric fields away from the electrode surface and sensitivity are unaffected. Electrodes were microfabricated (600μm×50μm, spacing of 100μm) with and without mesh holes 7.5μm×7.5μm in size. Simulations of electric field performed using Comsol Multiphysics showed non-uniformity of the electric field within less than 1.5μm from the electrode surface, which encompasses the double layer region, but at greater distance the solid and mesh electrodes gave the same results. Mesh electrodes reduced capacitance measurements for water and KCl solutions of different concentrations at low frequencies (<10kHz), while higher frequency capacitance remained the same for both electrode types, confirming our hypothesis that this design leaves the electric field mainly unaffected. Impedance measurements at low frequencies for water and mice heart mitochondrial suspension were lower for mesh than for solid electrodes. Comsol simulations confirmed these results by showing that mesh electrodes have a greater charge density than solid electrodes, which affects conductance. These electrodes are being used for mitochondrial membrane potential studies.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biomedical Engineering
  • Biosensing Techniques
  • Computer Simulation
  • Dielectric Spectroscopy / instrumentation
  • Dielectric Spectroscopy / methods*
  • Electric Capacitance
  • Electric Conductivity
  • Electric Impedance
  • Electrodes
  • Membrane Potential, Mitochondrial
  • Mice
  • Mitochondria, Heart / metabolism