Format

Send to

Choose Destination
See comment in PubMed Commons below
Genetics. 2011 Nov;189(3):939-49. doi: 10.1534/genetics.111.130468. Epub 2011 Aug 25.

Cost of adaptation and fitness effects of beneficial mutations in Pseudomonas fluorescens.

Author information

1
Bioinformatics Research Center, Aarhus University, 8000C Aarhus, Denmark.

Abstract

Adaptations are constructed through the sequential substitution of beneficial mutations by natural selection. However, the rarity of beneficial mutations has precluded efforts to describe even their most basic properties. Do beneficial mutations typically confer small or large fitness gains? Are their fitness effects environment specific, or are they broadly beneficial across a range of environments? To answer these questions, we used two subsets (n = 18 and n = 63) of a large library of mutants carrying antibiotic resistance mutations in the bacterium Pseudomonas fluorescens whose fitness, along with the antibiotic sensitive ancestor, was assayed across 95 novel environments differing in the carbon source available for growth. We explore patterns of genotype-by-environment (G × E) interactions and ecological specialization among the 18 mutants initially found superior to the sensitive ancestor in one environment. We find that G × E is remarkably similar between the two sets of mutants and that beneficial mutants are not typically associated with large costs of adaptation. Fitness effects among beneficial mutants depart from a strict exponential distribution: they assume a variety of shapes that are often roughly L shaped but always right truncated. Distributions of (beneficial) fitness effects predicted by a landscape model assuming multiple traits underlying fitness and a single optimum often provide a good description of the empirical distributions in our data. Simulations of data sets containing a mixture of single and double mutants under this landscape show that inferences about the distribution of fitness effects of beneficial mutants is quite robust to contamination by second-site mutations.

PMID:
21868607
PMCID:
PMC3213353
DOI:
10.1534/genetics.111.130468
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center