Format

Send to

Choose Destination
Int J Cardiol. 2013 Apr 30;165(1):117-25. doi: 10.1016/j.ijcard.2011.07.103. Epub 2011 Aug 24.

Ganoderma lucidum ameliorate mitochondrial damage in isoproterenol-induced myocardial infarction in rats by enhancing the activities of TCA cycle enzymes and respiratory chain complexes.

Author information

1
Department of Microbiology, Amala Cancer Research Centre, Amala Nagar, Thrissur, Kerala 680 555, India.

Abstract

BACKGROUND:

Decreased mitochondrial function has been suggested to be one of the important pathological events in isoproterenol (ISO)-induced cardiotoxicity. In this communication, we have evaluated the protective effect of Ganoderma lucidum against ISO induced cardiac toxicity and mitochondrial dysfunction.

METHODS:

Cardiac toxicity was assessed by determining the activities of creatine kinase (CK) and lactate dehydrogenases (LDH) after subcutaneous injection of ISO (85 mg/kg) at an interval of 24h for 2 days. The animals were sacrificed 24h after last ISO administration. G. lucidum (100 and 250 mg/kg, p.o.) was given to the rats once daily for 15 days prior to the ISO challenge. Similarly, α-Tocopherol (100mg/kg, p.o) was kept as the standard. To assess the extent of cardiac mitochondrial damage, the activities of Krebs cycle dehydrogenases and mitochondrial complexes I, II, III, and IV as well as the level of ROS and mitochondrial membrane potential (ΔΨmt) were evaluated.

RESULTS:

Administration of G. lucidum and α-tocopherol significantly protected the elevated activities of CK and LDH. Further, the activities of mitochondrial enzymes and the level of ΔΨmt were significantly enhanced and the level of ROS was significantly declined in the G. lucidum and α-tocopherol treatments.

CONCLUSION:

The present study concluded that the cardiac mitochondrial enzymes are markedly declined by the ISO challenge and the administration G. lucidum and α-Tocopherol significantly protected mitochondria by preventing the decline of antioxidant status and ΔΨmt or by directly scavenging the free radicals.

PMID:
21864918
DOI:
10.1016/j.ijcard.2011.07.103
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center