Format

Send to

Choose Destination
See comment in PubMed Commons below
J Alzheimers Dis. 2011;27(2):401-13. doi: 10.3233/JAD-2011-110476.

Aβ1-16 can aggregate and induce the production of reactive oxygen species, nitric oxide, and inflammatory cytokines.

Author information

1
Tsinghua University, School of Medicine, Haidian District, Beijing, China.

Abstract

Amyloid-β (Aβ40/42) aggregates containing the cross-β-sheet structure are associated with the pathogenesis of Alzheimer's disease (AD). It is generally accepted that the N-terminal peptide of Aβ40/42, Aβ1-16, does not aggregate, and is not cytotoxic. However, we here show that Aβ1-16 can aggregate, and form cytotoxic aggregates containing β-turns and regular non-amyloid β-sheet structures. Factors such as pH, ionic strength, and agitation were found to influence Aβ1-16 aggregation, and the amino acid residues Asp1, His6, Ser8, and Val12 in Aβ1-16 may play a role in this aggregation. Our MTT results showed that Aβ1-16 monomers or oligomers were toxic to SH-SY5Y cells, but Aβ1-16 fibrils exhibited less cytotoxicity. Our studies also indicate that Aβ1-16 aggregates can increase the formation of reactive oxygen species and nitric oxide, induce the loss of calcium homeostasis, and incur the microglial production of TNF-α and IL-4. Thus, our findings suggest that Aβ1-16 may contribute to AD pathogenesis.

PMID:
21860093
DOI:
10.3233/JAD-2011-110476
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IOS Press
    Loading ...
    Support Center