Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2011 Oct 14;286(41):35998-6010. doi: 10.1074/jbc.M111.254177. Epub 2011 Aug 22.

Calpain-cleaved type 1 inositol 1,4,5-trisphosphate receptor (InsP(3)R1) has InsP(3)-independent gating and disrupts intracellular Ca(2+) homeostasis.

Author information

Department of Emergency Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.


The type 1 inositol 1,4,5-trisphosphate receptor (InsP(3)R1) is a ubiquitous intracellular Ca(2+) release channel that is vital to intracellular Ca(2+) signaling. InsP(3)R1 is a proteolytic target of calpain, which cleaves the channel to form a 95-kDa carboxyl-terminal fragment that includes the transmembrane domains, which contain the ion pore. However, the functional consequences of calpain proteolysis on channel behavior and Ca(2+) homeostasis are unknown. In the present study we have identified a unique calpain cleavage site in InsP(3)R1 and utilized a recombinant truncated form of the channel (capn-InsP(3)R1) corresponding to the stable, carboxyl-terminal fragment to examine the functional consequences of channel proteolysis. Single-channel recordings of capn-InsP(3)R1 revealed InsP(3)-independent gating and high open probability (P(o)) under optimal cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) conditions. However, some [Ca(2+)](i) regulation of the cleaved channel remained, with a lower P(o) in suboptimal and inhibitory [Ca(2+)](i). Expression of capn-InsP(3)R1 in N2a cells reduced the Ca(2+) content of ionomycin-releasable intracellular stores and decreased endoplasmic reticulum Ca(2+) loading compared with control cells expressing full-length InsP(3)R1. Using a cleavage-specific antibody, we identified calpain-cleaved InsP(3)R1 in selectively vulnerable cerebellar Purkinje neurons after in vivo cardiac arrest. These findings indicate that calpain proteolysis of InsP(3)R1 generates a dysregulated channel that disrupts cellular Ca(2+) homeostasis. Furthermore, our results demonstrate that calpain cleaves InsP(3)R1 in a clinically relevant injury model, suggesting that Ca(2+) leak through the proteolyzed channel may act as a feed-forward mechanism to enhance cell death.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center