Send to

Choose Destination
Cell Mol Life Sci. 2011 Oct;68(19):3137-48. doi: 10.1007/s00018-011-0780-9. Epub 2011 Aug 20.

Genetic and functional linkage between ADAMTS superfamily proteins and fibrillin-1: a novel mechanism influencing microfibril assembly and function.

Author information

Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.


Tissue microfibrils contain fibrillin-1 as a major constituent. Microfibrils regulate bioavailability of TGFβ superfamily growth factors and are structurally crucial in the ocular zonule. FBN1 mutations typically cause the Marfan syndrome, an autosomal dominant disorder manifesting with skeletal overgrowth, aortic aneurysm, and lens dislocation (ectopia lentis). Infrequently, FBN1 mutations cause dominantly inherited Weill-Marchesani syndrome (WMS), isolated ectopia lentis (IEL), or the fibrotic condition, geleophysic dysplasia (GD). Intriguingly, mutations in ADAMTS [a disintegrin-like and metalloprotease (reprolysin-type) with thrombospondin type 1 motif] family members phenocopy these disorders, leading to recessive WMS (ADAMTS10), WMS-like syndrome (ADAMTS17), IEL (ADAMTSL4 and ADAMTS17) and GD (ADAMTSL2). An ADAMTSL2 founder mutation causes Musladin-Lueke syndrome, a fibrotic disorder in beagle dogs. The overlapping disease spectra resulting from fibrillin-1 and ADAMTS mutations, interaction of ADAMTS10 and ADAMTSL2 with fibrillin-1, and evidence that these ADAMTS proteins accelerate microfibril biogenesis, constitutes a consilience suggesting that some ADAMTS proteins evolved to provide a novel mechanism regulating microfibril formation and consequently cell behavior.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Springer Icon for PubMed Central
Loading ...
Support Center