Voluntary wheel running reverses age-induced changes in hippocampal gene expression

PLoS One. 2011;6(8):e22654. doi: 10.1371/journal.pone.0022654. Epub 2011 Aug 8.

Abstract

Normal aging alters expression of numerous genes within the brain. Some of these transcription changes likely contribute to age-associated cognitive decline, reduced neural plasticity, and the higher incidence of neuropathology. Identifying factors that modulate brain aging is crucial for improving quality of life. One promising intervention to counteract negative effects of aging is aerobic exercise. Aged subjects that exercise show enhanced cognitive performance and increased hippocampal neurogenesis and synaptic plasticity. Currently, the mechanisms behind the anti-aging effects of exercise are not understood. The present study conducted a microarray on whole hippocampal samples from adult (3.5-month-old) and aged (18-month-old) male BALB/c mice that were individually housed with or without running wheels for 8 weeks. Results showed that aging altered genes related to chromatin remodeling, cell growth, immune activity, and synapse organization compared to adult mice. Exercise was found to modulate many of the genes altered by aging, but in the opposite direction. For example, wheel running increased expression of genes related to cell growth and attenuated expression of genes involved in immune function and chromatin remodeling. Collectively, findings show that even late-onset exercise may attenuate age-related changes in gene expression and identifies possible pathways through which exercise may exert its beneficial effects.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Age Factors
  • Aging / physiology*
  • Animals
  • Body Weight / physiology
  • Gene Expression Profiling / methods
  • Hippocampus / metabolism*
  • Male
  • Mice
  • Mice, Inbred BALB C
  • Oligonucleotide Array Sequence Analysis / methods
  • Physical Conditioning, Animal / physiology*
  • Reverse Transcriptase Polymerase Chain Reaction
  • Transcriptome*

Associated data

  • GEO/GSE29075