Format

Send to

Choose Destination
See comment in PubMed Commons below
J Anim Sci. 2012 Jan;90(1):171-83. doi: 10.2527/jas.2011-4229. Epub 2011 Aug 19.

Transcriptome analysis of subcutaneous adipose tissues in beef cattle using 3' digital gene expression-tag profiling.

Author information

1
Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.

Abstract

The molecular mechanisms that regulate fat deposition in bovine adipose tissue have not been well studied. To elucidate the genes and gene networks involved in bovine fat development, transcriptional profiles of backfat (BF) tissues from Hereford × Aberdeen Angus (HEAN, n = 6) and Charolais × Red Angus (CHRA, n = 6) steers with high or low BF thickness were characterized by digital gene expression-tag profiling. Approximately 9.8 to 21.9 million tags were obtained for each library, and a total of 18,034 genes were identified. In total, 650 genes were found to be differentially expressed, with a greater than 1.5-fold difference between the 2 crossbreds (Benjamini-Hochberg false discovery rate ≤ 0.05). The majority of differentially expressed genes that were more highly expressed in CHRA vs. HEAN were associated with development, whereas the differentially expressed genes with greater expression in HEAN vs. CHRA were overrepresented in biological processes such as metabolism and immune response. Thirty-six and 152 differentially expressed genes were detected between animals with high (n = 3) and low (n = 3) BF thickness in HEAN and CHRA, respectively (Benjamini-Hochberg false discovery rate ≤0.05). The differentially expressed genes between high and low groups in CHRA were related to cell proliferation and development processes. In addition, lipid metabolism was 1 of the top 5 molecular and cellular functions identified in both crossbreds. Ten and 17 differentially expressed genes were found to be involved in fat metabolism in HEAN and CHRA, respectively. Genes associated with obesity, such as PTX3 (pentraxin 3, long) and SERPINE1 (serpin peptidase inhibitor, clade E, member 1), were more highly expressed (P < 0.05) in the subset of CHRA animals with greater BF thickness. Our study revealed that the expression patterns of genes in BF tissues differed depending on the genetic background of the cattle.

PMID:
21856901
DOI:
10.2527/jas.2011-4229
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Science Societies
    Loading ...
    Support Center