Send to

Choose Destination
Adv Biosci Biotechnol. 2011 Jun;2(3):132-137.

pHluorin2: an enhanced, ratiometric, pH-sensitive green florescent protein.

Author information

Endocrine Unit, Massachusetts General Hospital and Department of Medicine, Harvard Medical School.


Green florescent protein (GFP) variants that are sensitive to changes in pH are invaluable reagents for the analysis of protein dynamics associated with both endo- and exocytotic vesicular trafficking. Ratiometric pHluorin is a GFP variant that displays a bimodal excitation spectrum with peaks at 395 and 475 nm and an emission maximum at 509 nm. Upon acidification, pHluorin excitation at 395 nm decreases with a corresponding increase in the excitation at 475 nm. GFP2, a GFP variant that contains mammalianized codons and the folding enhancing mutation F64L, displays ~8-fold higher florescence compared to pHluorin upon excitation at 395 nm. Using GFP2 as a template, an enhanced ratiometric pHluorin (pHluorin2) construct was developed to contain fully mammalianized codons, the F64L mutation and ten of the thirteen pHluorin-specific mutations. As a result, pHluorin2 displays markedly higher florescence when compared to pHluorin while maintaining the ratiometric pH-sensitivity. Unlike native pHluorin, pHluorin2 expressed in the ligand-binding domain of the parathyroid hormone 1 receptor is readily detectable by confocal microscopy and displays a marked increase in florescence upon ligand-induced endocytosis to intracellular vesicles. Thus, pHluorin2's enhanced florescence while sustaining ratiometric pH-sensitivity represents a significant improvement for this methodological approach.

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center