Format

Send to

Choose Destination
Yeast. 1990 Mar-Apr;6(2):149-58.

Substrate-accelerated death of Saccharomyces cerevisiae CBS 8066 under maltose stress.

Author information

1
Department of Microbiology and Enzymology, Delft University of Technology, The Netherlands.

Abstract

When Saccharomyces cerevisiae CBS 8066 was grown under maltose limitation, two enzymes specific for maltose utilization were present: a maltose carrier, and the maltose-hydrolysing alpha-glucosidase. The role of these two enzymes in the physiology of S. cerevisiae was investigated in a comparative study in which Candida utilis CBS 621 was used as a reference organism. Maltose pulses to a maltose-limited chemostat culture of S. cerevisiae resulted in 'substrate-accelerated death'. This was evident from: (1) enhanced protein release from cells; (2) excretion of glucose into the medium; (3) decreased viability. These effects wee specific with respect to both substrate and organism: pulses of glucose to maltose-limited cultures of S. cerevisiae did not result in cell death, neither did maltose pulses to maltose-limited cultures of C. utilis. The maltose-accelerated death of s. cerevisiae is most likely explained in terms of an uncontrolled uptake of maltose into the cell, resulting in an osmotic burst. Our results also provide evidence that the aerobic alcoholic fermentation that occurs after pulsing sugars to sugar-limited cultures of s. cerevisiae (short-term Crabtree effect) cannot solely be explained in terms of the mechanism of sugar transport. Both glucose and maltose pulses to maltose-limited cultures triggered aerobic alcohol formation. However, glucose transport by S. cerevisiae occurs via facilitated diffusion, whereas maltose entry into this yeast is mediated by a maltose/proton symport system.

PMID:
2183522
DOI:
10.1002/yea.320060209
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center