Format

Send to

Choose Destination
J Phys Condens Matter. 2009 Sep 9;21(36):364206. doi: 10.1088/0953-8984/21/36/364206. Epub 2009 Aug 19.

Formation of diamond in the Earth's mantle.

Author information

1
The University of Alberta, Edmonton, AB, T6G 2E3, Canada.

Abstract

The principal sources of natural diamonds are peridotitic (about 2/3 of diamonds) and eclogitic (1/3) domains located at 140-200 km depth in the subcratonic lithospheric mantle. There, diamonds probably form during redox reactions in the presence of melt (likely for eclogitic and lherzolitic diamonds) or under subsolidus conditions in the presence of CHO fluids (likely for harzburgitic diamonds). Co-variations of δ(13)C and the nitrogen content of diamonds suggest that two modes of formation may have been operational in peridotitic sources: (1) reduction of carbonates, that during closed system fractionation drives diamond compositions to higher δ(13)C values and lower nitrogen concentrations and (2) oxidation of methane, that in a closed system leads to a trend of decreasing δ(13)C with decreasing nitrogen. The present day redox state of subcratonic lithospheric mantle is generally too reduced to allow for methane oxidation to be a widespread process. Therefore, reduction of carbonate dissolved in melts and fluids is likely the dominant mode of diamond formation for the Phanerozoic (545 Ma-present) and Proterozoic (2.5 Ga-545 Ma). Model calculations indicate, however, that for predominantly Paleoarchean (3.6-3.2 Ga) to Mesoarchean (3.2-2.8 Ga) harzburgitic diamonds, methane reduction is the principal mode of precipitation. This suggests that the reduced present day character (oxygen fugacity below carbonate stability) of peridotitic diamond sources may be a secondary feature, possibly acquired during reducing Archean (>2.5 Ga) metasomatism. Recycling of biogenic carbonates back into the mantle through subduction only became an important process in the Paleoproterozoic (2.5-1.6 Ga) and diamonds forming during carbonate reduction, therefore, may predominantly be post-Archean in age. For eclogitic diamonds, open system fractionation processes involving separation of a CO(2) fluid appear to dominate, but in principal the same two modes of formation (methane oxidation, carbonate reduction) may have operated. Direct conversion of graphitized subducted organic matter is not considered to be an important process for the formation of eclogitic diamonds. The possible derivation of (12)C enriched carbon in eclogitic diamonds from remobilized former organic matter is, however, feasible in some cases and seems likely involved, for example, in the formation of sublithospheric eclogitic diamonds from the former Jagersfontein Mine (South Africa).

Supplemental Content

Full text links

Icon for IOP Publishing Ltd.
Loading ...
Support Center