Format

Send to

Choose Destination
Plant Physiol Biochem. 2011 Oct;49(10):1147-54. doi: 10.1016/j.plaphy.2011.07.003. Epub 2011 Jul 23.

Analysis by virus induced gene silencing of the expression of two proline biosynthetic pathway genes in Nicotiana benthamiana under stress conditions.

Author information

1
Department of Agronomy, National Chung Hsing University, Taichung 402, Taiwan.

Abstract

Proline accumulation is responsible for stress adaptation in many plants. To distinguish the involvement of two proline synthetic pathways, the virus induced gene silencing (VIGS) system that silenced the expression of genes encoding Δ(1)-pyrroline-5-carboxylate synthetase (P5CS; EC:1.5.1.12) and ornithine-δ-aminotransferase (OAT; EC 2.6.1.13) was performed, separately or concomitantly, in four-week-old Nicotiana benthamiana. Leaf discs of VIGS-treated tobacco were subjected to the treatment of drought, abscisic acid (ABA), or polyethylene glycol (PEG). The treated leaf discs were then collected for the determination of mRNA, chlorophyll, proline and polyamine level. Under drought stress or PEG treatment, most proline accumulation was inhibited in P5CS-silenced plants and only a small portion was inhibited in OAT-silenced plants under drought stress and no inhibition was observed under PEG treatment. Under ABA treatment, proline accumulation was inhibited completely in P5CS-silenced plants but unaffected in OAT-silenced plants. The degradation of chlorophyll was enhanced in P5CS-silenced plants but retarded in OAT-silenced plants under PEG treatment. Under ABA treatment, the degradation of chlorophyll was unaffected in both P5CS-silenced and OAT-silenced plants. The increase of polyamine level was unaffected in P5CS-silenced plants but increased in OAT-silenced plants under PEG treatment. Under ABA treatment, the increase of polyamine level was unaffected in P5CS-silenced plants but the polyamine level was increased later in OAT-silenced plants. Therefore, P5CS plays a major role in proline accumulation under drought, PEG, or ABA treatment, while OAT plays a minor role in drought or PEG treatment and does not participate in ABA treatment. OAT appears to have a close relationship with the regulation of polyamine levels in PEG and ABA treatments.

PMID:
21831656
DOI:
10.1016/j.plaphy.2011.07.003
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center