Send to

Choose Destination
See comment in PubMed Commons below
Cell Res. 2012 Jan;22(1):237-47. doi: 10.1038/cr.2011.127. Epub 2011 Aug 9.

Small molecule-based disruption of the Axin/β-catenin protein complex regulates mesenchymal stem cell differentiation.

Author information

Department of Advanced Fermentation Fusion Science & Technology, Kookmin University, Seoul, Korea.


The Wnt/β-catenin pathway plays important roles in the differentiation of multiple cell types, including mesenchymal stem cells. Using a cell-based chemical screening assay with a synthetic chemical library of 270 000 compounds, we identified the compound SKL2001 as a novel agonist of the Wnt/β-catenin pathway and uncovered its molecular mechanism of action. SKL2001 upregulated β-catenin responsive transcription by increasing the intracellular β-catenin protein level and inhibited the phosphorylation of β-catenin at residues Ser33/37/Thr41 and Ser45, which would mark it for proteasomal degradation, without affecting CK1 and GSK-3β enzyme activities. Biochemical analysis revealed that SKL2001 disrupted the Axin/β-catenin interaction, which is a critical step for CK1- and GSK-3β-mediated phosphorylation of β-catenin at Ser33/37/Thr41 and Ser45. The treatment of mesenchymal stem cells with SKL2001 promoted osteoblastogenesis and suppressed adipocyte differentiation, both of which were accompanied by the activation of Wnt/β-catenin pathway. Our findings provide a new strategy to regulate mesenchymal stem cell differentiation by modulation of the Wnt/β-catenin pathway.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Support Center