Format

Send to

Choose Destination
See comment in PubMed Commons below
NMR Biomed. 2012 Jan;25(1):142-51. doi: 10.1002/nbm.1726. Epub 2011 Aug 8.

Effects of pyruvate dose on in vivo metabolism and quantification of hyperpolarized ¹³C spectra.

Author information

1
Technische Universität München, Chemistry, Munich, Germany. Martin@tum.de

Abstract

Real-time in vivo measurements of metabolites are performed by signal enhancement of [1-(13)C]pyruvate using dynamic nuclear polarization, rapid dissolution and intravenous injection, acquisition of free induction decay signals and subsequent quantification of spectra. The commonly injected dose of hyperpolarized pyruvate is larger than typical tracer doses, with measurement before complete dilution of the injected bolus. Pyruvate is in exchange with its downstream metabolites lactate, alanine and bicarbonate. A transient exposure to high pyruvate blood concentrations may cause the saturation of cellular uptake and metabolic conversion. The goal of this study was to examine the effects of a [1-(13)C]pyruvate bolus on metabolic conversion in vivo. Spectra were quantified by three different methods: frequency-domain fitting with LCModel, time-domain fitting with AMARES and simple linear least-squares fitting in the time domain. Since the simple linear least-squares approach showed bleeding artifacts and LCModel produced noisier time signals. AMARES performed best in the quantification of in vivo hyperpolarized pyruvate spectra. We examined pyruvate doses of 0.1-0.4 mmol/kg (body mass) in male Wistar rats by acquiring slice-selective free induction decay signals in slices dominated by heart, liver and kidney tissue. Dose effects were noted in all cases, except for alanine in the cardiac slice below the dose of 0.2 mmol/kg. Our results indicate unlimited cellular uptake of pyruvate up to this dose and limited enzymatic activity of lactate dehydrogenase. In the cardiac slice above 0.2 mmol/kg and in liver and kidney slices, reflect limited cellular uptake or enzymatic activity, or a combination of both effects. The results indicate that the dose of pyruvate must be recognized as an important determinant for metabolic tissue kinetics, and saturation effects must be taken into account for the quantitative interpretation of the observed results.

PMID:
21823181
DOI:
10.1002/nbm.1726
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center