Send to

Choose Destination
See comment in PubMed Commons below
Neuroscience. 2011 Oct 13;193:21-33. doi: 10.1016/j.neuroscience.2011.07.055. Epub 2011 Jul 27.

The endocannabinoid 2-arachidonoylglycerol mediates D1 and D2 receptor cooperative enhancement of rat nucleus accumbens core neuron firing.

Author information

Ernest Gallo Clinic and Research Center, University of California, San Francisco, Department of Neurology, 5858 Horton Street, Suite 200, Emeryville, CA 94608, USA.


Many motivated and addiction-related behaviors are sustained by activity of both dopamine D1- and D2-type receptors (D1Rs and D2Rs) as well as CB1 receptors (CB1Rs) in the nucleus accumbens (NAc). Here, we use in vitro whole-cell patch-clamp electrophysiology to describe an endocannabinoid (eCB)-dopamine receptor interaction in adult rat NAc core neurons. D1R and D2R agonists in combination enhanced firing, with no effect of a D1R or D2R agonist alone. This D1R+D2R-mediated firing increase required CB1Rs, since it was prevented by the CB1R antagonists AM251 and Rimonabant. The D1R+D2R firing increase also required phospholipase C (PLC), the major synthesis pathway for the eCB 2-arachidonoylglycerol (2-AG) and one of several pathways for anandamide. Further, inhibition of 2-AG hydrolysis with the monoglyceride lipase (MGL) inhibitor JZL184 allowed subthreshold levels of D1R+D2R receptor agonists to enhance firing, while inhibition of anandamide hydrolysis with the fatty acid amide hydrolase (FAAH) inhibitors URB597 or AM3506 did not. Filling the postsynaptic neuron with 2-AG enabled subthreshold D1R+D2R agonists to increase firing, and the 2AG+D1R+D2R increase in firing was prevented by a CB1R antagonist. Also, the metabotropic glutamate receptor 5 (mGluR5) blocker MPEP prevented the ability of JZL184 to promote subthreshold D1R+D2R enhancement of firing, while the 2-AG+D1R+D2R increase in firing was not prevented by the mGluR5 blocker, suggesting that mGluR5s acted upstream of 2-AG production. Thus, our results taken together are consistent with the hypothesis that NAc core eCBs mediate dopamine receptor (DAR) enhancement of firing, perhaps providing a cellular mechanism underlying the central role of NAc core D1Rs, D2Rs, CB1Rs, and mGluR5s during many drug-seeking behaviors.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center